

NeurAbilities NeuroGenomics Service Peer-to-Peer Notes

Client:	Frye, Richard, MD, PhD
Date:	2/23/2024
Patient:	Qemali, Albana
DOB:	11/13/2013 (10y)
Service level:	Basic Standard Comprehensive
Test/lab:	WGS trio / Variantyx
Off-target:	Requested by adult patient
Online:	Dr. Frye

Summary of the discussion:

Referral:

Trim Qemali <trimqemali@gmail.com> Fri 8/18/2023 9:34 PM To:Neurogenomics Coordinator <Neurogenomics@neurabilities.com>;Frye Euro Office <fryeeuroautismcare@gmail.com> Hi Elizabeth,

Here is an update regarding Albana's current status:

Albana is a 9-year-old with an extensive medical history spanning the last three years. Condensing the details into a single email proves challenging due to the volume of information.

Between August 2021 and December 2022, Albana was under the care of Dr. Matsev in Kiev, Ukraine. During this period, she underwent an intensive medical regimen. Dr. Maltsev diligently pursued resolution for various medical concerns, conducting comprehensive assessments throughout her body. Notably, when Albana was 7 years old at the time, she was prescribed a substantial array of medications as part of her treatment plan.

- Intravenous administration of Rituximab and Flammengis was employed to suppress the immune system effectively
 to a state of complete depletion. Concomitantly, ABX antibiotics were administered to address potential bacterial
 infections. Chelation therapy was utilized for detoxification purposes. In the end within the last 3 month she
 received 3 x 2g per KG IVIG.. IVIG exhibited promising results in terms of mitigating the symptoms associated with
 her Autism Spectrum Disorder (ASD). It has proven to be a particularly efficacious intervention in alleviating her
 condition.
- Simultaneously, an extensive pharmacological regimen was employed. The list of medications administered during
 this period is considerable. These medications include Propesum (administered intramuscularly, alternating between
 buttocks), Inflamafertinum (also administered intramuscularly, with alternating buttocks), Forsliv (administered as
 one tablet during meals), Karliv (administered as one tablet during meals), Artesunate (administered as a 50 mg
 tablet after eating), Medrol, a range of probiotics, kiprada, atoxil, antrax, and numerous others, to attack viruses
 found in blood such as TT, EBV, HH6 & HH7, keep care of the liver and so on.
- Additionally, nootropic agents were incorporated into the treatment protocol. Noteworthy examples include Cerebrocurin, which was administered via intramuscular injection at a dosage of 2.0 ml. Pantogam, at the same dosage previously prescribed, was also administered. Kiprada was provided in tablet form following meals. Furthermore, Valargin, at a dosage of 3000 mg, was administered as a tablet after dissolution in water and consumption alongside food.

Luckily she took everything well. Anyways, war started a month later and Albana received the last dosage of IVIG in Jan 2022.

In June 2022, the medical oversight for Albana was transitioned to Dr. Kiril Shlyapnikov. According to his assessment, the root cause appeared to lie within her mitochondria. Dr. Shlyapnikov's therapeutic approach primarily consisted of a regimen of supplements. Concurrently, to manage the anticipated hyperactivity resulting from the mitochondrial cocktail, Albana was prescribed risperidone for tranquility. Additionally, she was administered tegretol, an antiepileptic medication, despite the absence of a history of epilepsy. Dr. Shlyapnikov's rationale for this was to regulate a specific brain region associated with pain perception. It was a much lighter treatment program compared to Dr. Maltsev, however, discernible benefits did not manifest during this phase. Consequently, a pivotal shift in the treatment strategy occurred, prompting a consultation with Dr. Frye in November 2022.

Subsequently, we transitioned to the treatment protocol prescribed by Dr. Frye, which has proven notably effective. This regimen entails the administration of a judiciously low-dosage mitochondrial cocktail, in stark contrast to the approach previously advocated by Dr. Shlyapnikov. This protocol is complemented by periodic B12+Leucovorin injections. Notably, this course of action yielded a level of stability and modest yet discernible advancements in Albana's condition.

On the 14th of April 2023, following consultations with both Dr. Frye and Dr. Shlyapnikov, a decision was reached to initiate a regimen of bumetanide for Albana. It is pertinent to highlight that the dosage was deliberately maintained at a very low level (1 x 0.5 mg), as opposed to the originally suggested dosage of 2 x 0.5 mg by Dr. Frye. Within a mere two-week span, remarkable strides were observed. Albana exhibited heightened focus, displayed a heightened interest in

acquiring new knowledge, and notably commenced uttering phrases composed of 2, 3, and even 4 words—a developmental milestone previously unprecedented.

A period of smooth progress persisted until the conclusion of June 2023, when Albana began to articulate complaints of stomach discomfort. Notably, manifestations of stomach reflux were evident, accompanied by frequent hiccup episodes. Her daily food intake progressively diminished, resulting in a weight reduction of 2 kilograms. This compelled us to temporarily suspend the administration of all supplements. Following a noticeable improvement in her eating habits, we reinstated the supplement regimen from its initial stage. Regrettably, the resumption of stomach pain coincided with the recent introduction of TruNiagen and MagMind in the evening. We are presently engaged in a process of verification to ascertain whether these additions are indeed the root cause of her discomfort.

Since January 2023, an ongoing concern has been urinary tract infections. Commencing with an E. Coli infection in January-February 2023, this issue was succeeded by an Enterococcus infection in June 2023. A concerning development has been the emergence of self-harming behaviors, particularly hand biting, which has become more pronounced in recent times. Despite our efforts, we have yet to definitively identify the underlying trigger for this behavior. Encouragingly, Albana's verbal communication skills have exhibited satisfactory progress thus far. However, in the past three weeks, there has been a recurrence of sleep disturbances—a challenge that had been effectively managed for over a year. Albana's sleep duration currently spans around 6 to 7 hours, after which she awakens.

Once Dr. Boles undertakes a comprehensive review of Albana's genetics, I intend to bring to his attention the pertinent information that Albana exhibits an unfavorable response to B6 pyridoxine. Specifically, she experiences tremors and involuntary movements of her body and head immediately before falling asleep, particularly when subjected to elevated doses of B6. It is noteworthy, however, that there are no adverse effects when Albana consumes B6 in lower quantities, such as those found in Energyneeds by Neuroneeds, prescribed by Dr. Frye

In June 2023, we conducted a series of blood tests as part of Dr. Frye's treatment program, yielding remarkable outcomes. Notably, we attained nearly normal results on a laboratory test, marking a significant milestone. The corresponding file can be accessed through the following link:

https://albana.spa.mk/wp-content/uploads/2023/08/May2023.pdf

Additional results spanning the period from June 2022 to January 2023 are available for review at the following link in a comparison table:

https://albana.spa.mk/wp-content/uploads/2023/08/Results-Jun22-Jan23.pdf

A mitochondrial genome report from 2021, obtained through an alternate DNA sequencing process, which could potentially provide valuable insights for Dr. Boles, can be accessed through the following link: <u>https://albana.spa.mk/wp-content/uploads/2022/11/Genom-Mito-1.pdf</u> Please note the additional resources and information that are available to Albana's health records website at https://albana.spa.mk.A comprehensive array of materials, including FRAT tests, Cunningham Panel results, MRI and EEG reports, and more. Should Dr. Boles require further clarification or access to any specific materials feel free to contact me by email or phone at any time. I hope that I have included the most important information to share in this message.

Patient information:

Dr. Frye:

Date of Visit: Oct 31 2023

Ał	berra	ant Behavior Che	ecklist Res	ults				
Rep	ort Dat	te: 10/24/2023	Age: 9.9	C	ompleted By:	Father		
						Refere	ence Scales	
	So	cores by Category	Interpretation		None	Mild	Moderate	Severe
	18	Irritability	Mild	Irritability	0-16	17-26	27-36	37+
	7	Social Withdrawal	None	Soc W/D	0-15	16-26	27-38	39+
	3	Stereotypy	None	Stereotypy	0-8	9-12	13-16	17+
	16	Hyperactivity	None	Hyperactivity	0-23	24-31	32-39	40+
	0	Innapropriate Speech	None	Inapp Speech	0-5	6-7	8-9	10+

Social Responsive Scale Survey Results

	e: 10/24/2023 er: Female	Age: 9.9	(Completed By:	Fat	her	
						Reference	Scales
Raw	Scores by Category	T-Score	Interpretation			Total T Score	Interpretation
8	Awareness	58.8	None			0 - 59	None
19	Cognition	77.0	Severe			60 - 65	Mild
26	Communication	68.6	Moderate			66 - 75	Moderate
16	Motivation	0.6	Moderate			76 - 90+	Severe
14	Mannerisms	55.4	None				
Raw	Overall Assessment	T-Score	Interpretation				
69	SCI Tota	73.0	Moderate				
83	Tota	73.0	Moderate				

Gastrointestinal Survey Results

Report Date: 10/24/2023 Age: 9.9 Completed By: Father

No Survey Taken - Descriptive info below, if provided

	Responses
Constipation	5+/wk
Diarrhea	2-3/day
Average Stool Consistency	Formed
Stool Smell	Normal
Flatulence	Normal

Developmental history: Mama / dada said specifically at 36 months. Walked at 20 months. Pointed at 44 months. Neurodevelopmental Regression: None Developmental problem first suspected at: 2 years of age. Diagnosis of autism made at 3 years of age months. Other Developmental Diagnoses Include: Speech, motor and global delay at 2 years Therapies started included ABA.

General Changes from Nov 7 2022:

May - bumex - within two weeks - more focused and language Duly – weight loss of appetite along with UTIs, stopped medication (except mB12/FA injections) without regression but did not improve appetite

Restarted bumex with improvements again TruNigen

EnergyNeeds 3 Capsule BID - full dose tremors Vit D and C

B12/FA EOD

Leucovorin 15mg once a day

Self-harm has resolved

Bed 9pm – 30 min – awake at 2am and turns on light stays up for 1hr. Wakes up at 5am does not go back to sleep. Not tired in the morning. Lots of energy

BM daily normal. Gradually started rejecting food, first fries and then noodles. Eats fruits and drinks ok and chocolate. Omeprazole for 1 week without improvement. Lots of hiccups.

Current Medications 1. Risperidone 1mg/ml Oral Solution, take 0.5ml once a day at 20:00. 2. Carbamazepine retard 200mg 2 times a day (200mg in morning at 200mg at

night). 3. Cromoglycic acid (or sodium cromoglicate - Allergoval) 200mg 3 times a day

before the main meals

4. Leukovorin tablets 15 mg twice a day.

Current Supplements :

Immunoglobulins IgC, IgM, IgA for oral intake Mitochondrial cocktail" – metabolic supplements for regular use

1. Vitamin D 5000 IU daily.

2. Ubiquinol 200mg 3 times a day.

Examination Wt: 28 kg

Crying and wants to leave. Friendly and poor eye contact. Few words. Relatively calm but inattentive and impulsive. Decreased bulk. Tone and DTR reduced. MMM, EOMI, CTA, RRR without murmur. No rash or neurocutaneous stigmata.

IMPRESSION:

The following problems seems to be: Mitochondrial Dysfunction given biomarkers, motor delays. Mitochondrial dysfunction can compromise transport of folate into the nervous system.

Mitochondrial Support

- Continue Ubiquinol 100mg twice a day
- Start EnergyNeeds by Neuroneeds
- (https://www.neuroneeds.com/product/energyneeds/) 3 capsules twice a day Start NAD+ - TruNiagen 300mg once a day

Central Folate Leucovorin

Continue Leucovorin 30mg twice a day

Methylation Support

Continue B12 SQ 1250mcg every other day

General Changes from Nov 7 2022:

November was one of the best months before starting treatment. Dec 15 she had tooth issue and nocturnal enuresis and increased repetitive behavior and increased anxiety and increase SIBs and decreased verbal communication and eye contact. Found to have E Coli UTI and treated with Nitrofurantoin and continue with prolonged course and now urine negative.

B-Complex Life Extension - Tremor Liposomal B12 - no tremors

B12 shots - went well for two weeks with improvements with verbal communication
 then got flu and virus and stopped.

- 3. Acetyl-L-carnitine 750mg 3 times a day before meals.
- 4. Ascorbic acid 50mg a day.
- 5. Alfa lipoic acid 150mg / day.
- 6. Vitamin E 100 IU daily.
- 7. Citrulline malate take 2 grams at morning and evening.
- 8. Glutathione take 100mg in morning and evening.
- Resveratrol 500-600mg daily.
- 10.Niacinamide 500mg daily in morning.
- 11.Inosine take 500mg 3 tablets a day.

PLAN:

GI

- Gastroenterologist Evaluation Dr Krigsman
- Digestive Enzymes Houston Enzymes Trienza with meals
- Biocidin@LSF 1 pump per day

Genetics Workup:

- Whole Genome Sequencing Trio (Variantyx)
- Dr Richard Boles Neurogenetics (molecularmitomd.com)
- Possible genes ACAD9, COQ4, ATP8

Mitochondrial Support

- Restart Ubiquinol 100mg twice a day
- Start EnergyNeeds by Neuroneeds (https://www.neuroneeds.com/product/energyneeds/) 3 capsules twice a day
- Start NAD+ TruNiagen 300mg once a day
- MitoSynergy Original Formula
- <u>https://mitosynergy.com/collections/all-products/products/mitoactivator-</u> original
- Designs for Health L-Carnitine 800mg twice a day

Central Folate Leucovorin

Increased Leucovorin 30mg twice a day

Methylation Support

• Continue B12/FA SQ every other day

Coastal Compounding

Neurotransmitters

- Bumex 0.5 tablet twice a day
 - Memantine 10mg tablet twice a day. Start at 5mg (1/2 tablet) twice a day for 2 weeks and then increase to 1 tablet twice a day.

Follow-Up: 3 months zoom

Time: 1hr face to face

Diagnostic Codes Encephalopathy [G93.40 (348.30)] Mixed receptive and expressive developmental Language Disorder [F80.2] Sleep disorder [G47.9 (780.50)]

PFO spontaneously closed, lipoma removed from back, strabismus

Family history:

Mother late talker. No family history of autism. No family history of seizure or other neurological disorders No family history of mitochondrial disease Mom dx Sjogren's syndrome, otherwise no other family history of lupus, rheumatoid arthritis, Crohn's disease, ulcerative colitis, or celiac disease Diabetes on mom's side

Non-genetic test results:

Previous Recommendations and Results

Fasting before breakfast

- Ammonia slightly elevated 51 (17–50) / Normal 45 Complete Metabolic Panel (CMP) normal
- lactic acid 3,8 (H) Acylcarnitine profile summary normal
- Carnitine slightly elevated free on supplementation Pyruvate not done

- homocysteine normal 6.1 Amino acids analysis, Plasma(Quantitative) A/L 2.8 (H) Urine Organic Acids – Succinic high, 2-oxogluteraric low, hydroxybutyric high Urinary orotic acid NSE 16 – normal x 2 S-100 0.242 (<0.105)

- CRP 0.2 (<5) IL-1B <5
 - II -8 normal

CH-50 normal Vit D 57 TSH ok

Repeat after a large protein meal (protein shake: Premier Protein Shake 30g protein) - Ammonia - 68 (18-72) - Complete Metabolic Panel (CMP) - lactic acid - 3.4 (H)

- Acylcarnitine profile not calculated Pyruvate

 Anonocysteine
 Amino acids analysis, Plasma(Quantitative) - Alanine 1034, A/L 4.4, Citrulline 62 (1-46) and Arginine 269 (10-140) Urine Organic Acids - hydroxybutyric, Fumaric, 3-methylcrotonylglycine, Tiglyglycine high

Urinary orotic acid

Labs Q10 high Pyruvate normal Lysosomal oligosaccharides normal S100B 0.14 (<0.1.05)

Mito Swab CS 177% C4 25% C1 15% C2 68%

Previous Recommendations

Workup for possible CONGENITAL DISORDER OF DEGLYCOSYLATION 1 - Urine oligosaccharides - Blood alpha-fetoprotein

Workup for possible COQ4 deficiency

- CoQ10 level after one week without supplementation.

Possible ACAD9 - Complex I Deficiency

- Avoid Aspirin
- Consider Riboflavin Supplementation
- Mito-Swab to look for complex I deficiency

<u>Endocrine</u>: Total T4 ok

Immune abnormalities: NSE and SIOOB were elevated initially but improved. ANA normal C3c, C4 ok IgG ok EST ok Neutrophil myeloperoxidase activity low initially but then improved with therapy Cunningham Panel: Elevated D! and Anti-Tubulin. CamKinase II 170. <u>Neurologic</u> MRI: Left temporal arachnoid cyst. EEG: Low amplitude.

Metabolic: Homocysteine normal MTHFR Homozygous for 1298 MTRR meter for 66 A>G Ammonia elevated Lactate and L/P elevated Amino Acids overall low. FRAT double negative Self Restricts meat

Nutritional: Vit D: low normal

Genetic test results:

Report: Life Diagnostic Patient: Albana Qemali Date: 01.06.2023

G-Life www.g-life.care e-mail:contact@g-life.care

Analysis - Annotation with **Franklin** by **Genoox**, Palo Alto, CA, USA on raw FASTAQ files, created by Dante labs.

Result: Nine variants have been detected, one pathogenic, one likely pathogenic, and the rest are with uncertain significance.

Nr.	Gene / region	Variant	Variant type	Zygosity	Variant classification
1.	CYP24A1	CYP24A1:c.428_430delAAG (p.Glu143del) (<u>rs777676129</u>)	InDel, inframe deletion	Heterozygote	Pathogenic
2.	CYP24A1	CYP24A1:c.849A>T (p.Lys283Asn)	SNV, Missense	Heterozygote	Uncertain significance
3.	SNC10A	SCN10A:c.2485C>T (p.Arg829Cys) (<u>rs755974168</u>)	SNV, Missense	Heterozygote	Likely Pathogenic
4.	SNC10A	SCN10A:c.4089G>A (p.Val1363Val)	SNV, Splice region	Heterozygote	Uncertain significance (Likely Patogenic)
5.	CLPB	CLPB:c.1717C>T (p.Arg573Cys) (<u>rs186989806</u>)	SNV, Missense	Heterozygote	Uncertain significance (leaning pathogenic)
6.	MT-ATP8	MT-ATP8:c.116C>T chrM-8481 C>T (p.Pro39Leu) (<u>rs1603221521</u>)	SNV, Missense	Heterozygote	Uncertain significance (leaning pathogenic)
7.	CACNA1G	CACNA1G:c.4987G>C (p.Val1663Leu) (rs1450618466)	SNV, Missense	Heterozygote	Uncertain significance (leaning pathogenic)
8.	ERF	ERF:c.205G>A (p.Val69Ile) (<u>rs745819984</u>)	SNV, Missense	Heterozygote	Uncertain significance (leaning pathogenic)
9.	кмт2С	KMT2C:c.7443-7_7443- 6delTT (<u>rs746018833</u>)	InDel, Intron variant	Heterozygote	Uncertain significance (leaning benign)
10.	2q12.1 Deletion	PANTR1 POU3F3	Deletion3.105 bp	Heterozygote	Pathogenic

Two of these variants are shared with the mother, two others are shared with the father.

Interpretation:

1. <u>Variant in the gene CYP24A1:c.428_430delAAG (p.Glu143del), Exon 2, autosomal</u> recessive

Official laboratory report:

Patient Name Albana Qemali	Date of Birth Nov 13 2013	Test 202639147 / 70147	Genetic Sex Female
	Results: NEGATIVE		Ordering Physician Richard Frye
No pathogenic or likely pathog with the clinical symptoms pro	genic variants sufficient to cause disease were wided.	e identified that have been associated	NPI 1891730461
No variants were identified in be reported as secondary findi	the American College of Medical Genetics an ings.	d Genomics (ACMG) list of genes to	Provider Neurodevelopmental Precision Medicine
owever, variants were identified in this analysis that were not considered to impact the interpretation of this port and are listed in the supplementary tables below: 'Previously Reported Results' and 'Regions of omozygosity (ROH)'.		Test Performed Trio	
			Type Blood
			Collected Nov 21 2023
			Received Nov 24 2023
		J	Processed Jan 18 2024
Additional Information			
NGLY1, CLPB, DHTKD1, CSGA	entioned that previous genetic testing from LNACT1, ACAD9, CPS1, COQ4, BSCL2. Howev this report. This report includes analysis and	ver, these variants could not be identified	with the information provided and,

Consider family studies for UPD should there be any clinical correlation with conditions that arise due to UPD of chromosome 11.

Indication for Testing (Phenotype)

Behavioral abnormality, Cognitive impairment, Arachnoid cyst, Delayed speech and language development, Insomnia, Feeding difficulties, Recurrent singultus, Autism, EEG abnormality, Skeletal muscle atrophy, Hypotonia, Hyporeflexia, Encephalopathy, Global developmental delay, Recurrent ear infections

Likely Diagnostic Findings

This section contains variant(s) in genes partially or fully consistent with the clinical phenotype. No findings were identified.

ACMG Secondary Findings

This section of the report includes variants identified in a list of genes recommended by the American College of Medical Genetics and Genomics (ACMG) for reviewing and reporting secondary findings. No variants meeting the ACMG recommendations for reporting secondary findings were identified. Note that in some cases variants in genes listed by the ACMG may be reported in other sections of this report if the associated disorder is consistent with the patient's phenotype.

Regions of Homozygosity (ROH)

Regions of homozygosity, also known as loss of heterozygosity (LOH) or absence of heterozygosity (AOH), are genomic segments showing a continuous stretch of homozygous variants with no statistically significant intervening heterozygous variants. ROH may be representative of uniparental disomy (UPD), ancestral homozygosity or regions inherited from a more recent common ancestor that are identical by descent (IBD). If the analysis includes sequence analysis, these regions will be interrogated for homozygous pathogenic or likely pathogenic variants and reported as indicated. Consider family studies for UPD if there is clinical correlation with the reported imprinted chromosome. Reporting ROH follows the ACMG guidelines for ROH and UPD (PMID: 23328890, 32296163).

LOCATION	VARIANT	DISEASE / INHERITANCE
11p11.2p11.11 NC_000011.10: g.45,800,981_51,182,410	5.38 Mb	Region of Homozygosity

Previously Reported Results

This section of the report includes variants reported by previous genetic testing, either in this individual or in a family member, that do not otherwise meet our clinical diagnostic reporting criteria. Disease associations for the gene(s) in this table are not provided in the absence of clinical and/or molecular correlation. Variants are only included in the report if sufficient variant information was provided at the time of testing. For previously reported structural variants, if identified, see additional comments below. Any previously previous that meet our clinical diagnostic reporting criteria will appear in other sections of this report. Any differences in variant nomenclature from previous results may be due to differences in reference transcript, genome build, testing methodology, and/or bioinformatics platforms used.

LOCATION	VARIANT
<i>MTHFR</i> NM_005957.5	c.1286A>C p.Glu429Ala rs1801131 Homozygous in proband Heterozygous in father Heterozygous in mother
MTRR NM_002454.3	c.66A>G p.Ile22Met rs1801394 Heterozygous in proband Not detected in father Heterozygous in mother

Sample Information					
PATIENT	SEX	DATE OF BIRTH	SPECIMEN TYPE	DATE COLLECTED	DATE RECEIVED
Proband Albana Qemali 202639147	F	Nov 13 2013	Blood	Nov 21 2023	Nov 24 2023
Mother 202639129	F	-	Blood	Nov 21 2023	Nov 24 2023
Father 202639138	м	-	Blood	Nov 21 2023	Nov 24 2023

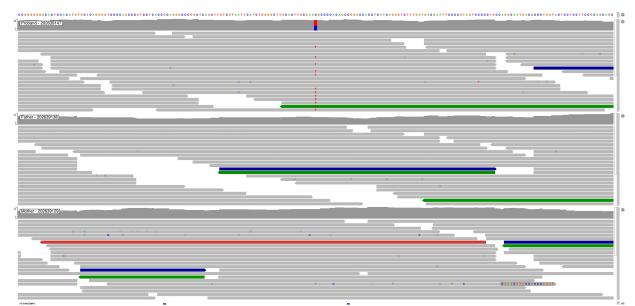
Patient Genotype		
GENE	GENOTYPE	METABOLIZER STATUS
CYP2B6	*1/*1	Normal Metabolizer
CYP2C19	*1/*17	Rapid Metabolizer
CYP2C9	*1/*2	Intermediate Metabolizer
CYP2D6	*1/*4	Intermediate Metabolizer
CYP3A5	*3/*3	Poor Metabolizer
CYP4F2	*1/*3 (V433M)	Indeterminate
DPYD	Reference/Reference	Normal Metabolizer
NAT2	*6/*6	Indeterminate
NUDT15	*1/*1	Normal Metabolizer
SLCO1B1	*1/*15 (521C)	Decreased Function
TPMT	*1/*1	Normal Metabolizer
UGT1A1	*1/*80+*28	Intermediate Metabolizer
VKORC1	Reference/rs9923231 (-1639G>A)	Indeterminate

Comprehensive Sequence Re-analysis - Variants of potential interest:

De novo small variants:

ERF c.205G>A, p.Val69Ile, chr19:42,250,383, Exonic (Nonsynonymous SNV), heterozygous, *de novo*:

	/	Ω	ERF_c:205G>A p.Val69lle chr19:42,250,383 Exonic Pop Freq (HET HO) 0.0000186 (30 -)	(Nonsynonymous SNV) Inheritance AD				Zygosity Heterozygous
			Autosomal dominant Craniosynostosis 4 Autos Mendelian Violation	omal dominant Chitayat syndrome 💿 Aut	tosomal don	iinant ERF-related diso	rders	
				Curat	ed	REVEL	Predicted	Phenotype
	27	i						
	GENE		CIATIONS		(ERF) 12 entries	 Conotruncal heart Craniosynostosis, ERF-related disord 	nonsyndromic	elopmental disorder
_	E		Autosomal dominant Craniosynostosis 4	CURAT		 Hyperphalangism, Multiple congenita 	facial anomalies, an	d bronchomalacia
	ИІМ RF)		Autosomal dominant Chitayat syndrome			Schizophrenia		
	ntries		Autosomal dominant ERF-related disord			TWIST1-related cr		
Т	RPHAN ERF) entries	•	Non-syndromic sagittal craniosynostosis) Crouzon syndrome) Craniosynostosis-facial dysmorphism-Chiari-1 malformation-d	levelopmental and language delay syndrome	ClinVar	 Craniosynostosis 4 Inborn genetic dis Chitayat syndrom Craniosynostosis 4 	eases e	2
		0	Craniosynostosis Craniosynostosis, complex I Chiari 1 malformation Autism spectrum disorder		(ERF) 10 entries	 ERF-Related Disor See cases Multiple myeloma Neonatal encepha 		
H /E	SMD	-) Developmental disorder) Achondroplasia with craniosynostosis			Neurodevelopmer		
F	HENO	TYPE	MATCHING					
			UNMATCHED PATIENT	MATCHED			U	IMATCHED DISEASE
0 0		ive imp nia	bnormality pairment			● Thi ● Hy	ort stature ck vermilion border pertelorism pressed nasal bridge	
Ø	Autism	1		Recurrent singultus			ort columella Ichydactyly	
	Hypore Global		a opmental delay	Delayed speech and language development	t	Hai	llux valgus	
			icle atrophy	Recurrent ear infections		 An Pro 	teverted nares optosis	
0 0	EEG ab Feedin Arachn Hypoto	g diffio Ioid cy	culties			AuPol	ctus excavatum tosomal dominant inhe yhydramnios	ritance
	ROUP	77609	SITY			D Gei	neralized hypotonia	
<u>.</u>	ndelian			Proband 202	639147			BS4 PP1 PS2
	true			Reference/Alternat				15/19
NO	e CHZ ental A	llele		Zygosity Alt Allele Fraction				Heterozygous 55%
-				□ Father 20263	9138			
				Reference/Alternat	e			20/0
				Zygosity Alt Allele Fraction				Homozygous Reference 0%
				() Mother 2026	39129			
				Reference/Alternat	e			38/0
				Zygosity Alt Allele Fraction				Homozygous Reference
				All Allele Hacuoli				t t


							BS3 BP6 PP5 PM5 PS1
GVS Coding 🖸			NM_006494.4:c.205G>				
ene 🖸			ER	F			
INCLUDE IN REPORT	DISEASE		SEVERITY		OMIM		IEW STATUS
7	not provided		Uncertain significance		•	criteria provide	ed, single submitter (1/4)
COMPUTATIONAL AND PREDI	CTIVE						BP4 BP7
urated Severity Score		MutationTaster		SIFT		MetaLR	
		1.0,D		0.423,T		0.0179,T	
REVEL 0.097		PhyloP 0.935,D		FATHMM 2.03,T		GERP++ 4.52,D	
ggregate Predicted Severity Sco	re	PhastCons		LRT		MetaSVM	
.41		0.967,D		1.6e-05,D		-0.9732,T	
		MutationAssessor -0.52,T		Siphy 12.5983,B		SpliceRF	
						SpliceADA	
POPULATION DATA							BA1 BS1 BS2 PM2
ate Range Specific PAF							DAT D31 D32 PM2
	1Y 'D2Y						
op Freq		gnomAD Frequency 🖸		anomAD Exom	es Frequency 🖸		
0000186		0.0000186		-			
ariantyx Frequency		gnomAD Heterozygous 30					
ariantyx PDK Count		gnomAD Homozygous					
		- gnomAD NF Frequency 0.0000333					
		gnomAD NF Population Latino/Admixed American					
Genetic Ancestry Group		Allele Count	Allele N	umber	Number	of Homozygotes	Allele Frequency
Remaining		3		62468		0	0.00004802
Admixed American		2		60012		0	0.00003333
European (non-Finnish)		24	11:	30040		0	0.00002034
African/African American		1		74934		0	0.00001335
European (Finnish)		0		64024		0	0.000
Middle Eastern		0		5882		0	0.000
South Asian		0		91070		0	0.000
Ashkenazi Jewish		0	:	29604		0	0.000
East Asian		0		14886		0	0.000
Amish		0		912		0	0.000
кх		14	8	12342		0	0.00001723
XY		16	8	01490		0	0.00001996
Total		30	16	13832		0	0.00001859

Gaps				Multiz Alignments of 10	00 Vertebrates		
Human	С	К	R	V	G	W	L
Chimp	C	K	R	V	G	W	Ļ
Gorilla Orangutan	C C	K K	R R	V	G	W	L
Gibbon	С	ĸ	R	v	G	ŵ	Ĺ
Rhesus	C	K	R	V	G	W	L
Crab-eating_macaque	C	K K	R	V	G	W	L
Baboon Green_monkey	C C	ĸ	R R	V	G	W	
Marmoset	С	ĸ	R	v	Ğ	ŵ	Ĺ
Squirrel_monkey	С	К	R	V	G	W	L
Bushbaby	C	K	R	V	G	W	
Chinese_tree_shrew Squirrel	C C	K K	R R	V	G	W	L
.esser_Egyptian_jerboa	č	ĸ	R	v	Ğ	Ŵ	Ĺ
Prairie_vole	С	К	R	V	G	W	L
Chinese_hamster	C	K	R	V	G	W	L
Golden_hamster Mouse	C C	K K	R R	V	G G	W	L
Rat	č	K	R	V	G	Ŵ	
Naked_mole-rat	С	К	R	V	G	W	L
Guinea_pig	C	K	R	V	G	W	L
Chinchilla Bruch tailed, rat	C	K K	R R	V	G	W	Ļ
Brush-tailed_rat Rabbit	C C	ĸ	R	V	G	Ŵ	
Pika	č	ĸ	R	v	Ğ	ŵ	Ĺ
Pig	С	К	R	V	G	W	L
Alpaca	C	K	R	V	G	W	Ļ
Bactrian_camel Dolphin	C C	K K	R R	V	G	W	L I
Killer_whale	c	K	R	V	G	W	ĩ
Tibetan_antelope	С	ĸ	R	v	G	W	ī
Cow	С	К	R	V	G	W	L
Sheep Domostic goat	C	K	R	V	G	W	L
Domestic_goat Horse	C C	K K	R R	V	G	W	L
White_rhinoceros	С	K	R	V	G	Ŵ	Ľ
Cat	С	K	R	V	G	W	L
Dog	C	K	R	V	G	W	
Ferret_ Panda	C C	K K	R R	V	G	W	
Panda Pacific_walrus	c	K	R	V	G	W	L
Weddell_seal	С	ĸ	R	V	G	W	Ē
Black flying-fox	С	K	R	V	G	W	Ļ
Megabat David's_myotis_(bat)	C C	K K	R R	V	G	W	L
Little_brown_bat	c	K	R	V	G	W	L
Big_brown_bat	С	ĸ	R	v	G	W	ī
Hedgehog	С	K	R	V	G	W	L
Shrew Star-nosed_mole	C C	K	R R	V	G G	W	L
Elephant	č	K	R	V	G	Ŵ	L
Cape_elephant_shrew	С	ĸ	R	v	G	Ŵ	ī
Manatee	C	K	R	V	G	W	Ļ
Cape_golden_mole	C C	K K	R R	V V	G	W	Ļ
Tenrec Aardvark	č	K	R	V	G	Ŵ	
Armadillo	N N	N N N	N N N	N N N	N N N	N N N	N N N
Opossum	C	K	R	R	G	W	L
Tasmanian_devil Wallaby	C C	к к	R R	V	G G	W	
Platypus	R	T	R	v v	G	Ŵ	L L
Saker_falcon	C	K	R	R	G	Ŵ	Ē
Peregrine_falcon	С	K	R	R	G	W	Ļ
Collared_flycatcher White-throated_sparrow	N S	K K	R R	F	G G	W	L
Medium_ground_finch	C	K	R	R	G	W	Ĺ
Zebra_finch	С	K	R	R	G	W	ī
Tibetan_ground_jay	С	K	R	V	G	W	L
Budgerigar	C C	K K	R R	R. R	G	W	Ļ
Parrot Scarlet_macaw	c	ĸ	R	R	G	W	L
Rock_pigeon	č	ĸ	R	R	Ğ	Ŵ	Ē
Mallard_duck	С	К	R	R	G	W	L
Chicken	C	K	R	R	G	W	
Turkey American_alligator	C C	K	R	V	G	W	L
Green_seaturtle	č	K	R	v	G	Ŵ	Ĺ
Painted_turtle	С	К	R	V	G	W	L
Chinese_softshell_turtle	C	K	R	V	G	W	Ļ
Spiny_softshell_turtle Lizard	C C	ĸ	R R	R	G	W	L
X_tropicalis	č	K	R	V	G	W	ĩ
Coelacanth	C	K	R	l l	G	Ŵ	L
Tetraodon	C	K	R	A	G	W	L
Fugu Yellowbelly_pufferfish	C C	K	R	A	G	W	L
Vellowbelly_putterrish Nile_tilapia	c	ĸ	R	A	G	W	ĩ
Princess_of_Burundi	C	ĸ	R	A	G	Ŵ	Ē
Burton's_mouthbreeder	С	K	R	A	G	W	L
	C	K	R	A	G	W	
Zebra_mbuna	C C	K	R	A	G	W	L
Pundamilia nyererei		K	R	A	G	Ŵ	Ĺ
Pundamilia_nyererei Medaka	С			٨	G	Ŵ	
Pundamilia_nyererei Medaka Southern_platyfish Stickleback	C C	K	R	A			
Pundamilia_nyererei Medaka Southern_platyfish Stickleback Atlantic_cod	C C	K K	R	A	G	Ŵ	Ĺ
Pundamilia_nyererei Medaka Southern_platyfish Stickleback Atlantic_cod Zebrafish	C C C	K K	R R	A A A	G	W	
Pundamilia_nyererei Medaka Southern_platyfish Stickleback Atlantic_cod Zebrafish exican_tetra_(cavefish)	C C	K K K K	R R R	A A A A A	G G G	W W W W	
Pundamilia_nyererei Medaka Southern_platyfish Stickleback Atlantic_cod Zebrafish	C C C		R R R R R	A A A A - G	G G G G	W W W	
Pundamilia_nyererei Medaka Southern_platyfish Stickleback Atlantic_cod Zebrafish exican_tetra_(cavefish) Spotted_gar	с с с с с	к	R R R R R	A A A A - G nort Genetic Variants from	G G G G	W W W W	

UCSC-GB: Valine is highly conserved in mammals, but not beyond that. Isoleucine is formed by a transition (common mutation), and is only found among mammals in panda and Tasmanian devil. This suggests that this variant may not be tolerated. Opossum has arginine, all others mammals have valine.

(Cursor Guide) (Center Line) (Track Labels) (Save SVG) 🖨 — — 🕞

ERF: ETS2 repressor factor

HGMD Disease 40							
HGMD Disease	s 🖽						
DISEASE	COUNT	PUBLICATIONS					
<u>Glass et al. (2019) Am / Med Genet A 179:615</u>							
		Yoon et al. (2019). Neurosurgery 87:294					
Craniosynost osis	23	<u>Topa et al. (2020) Am J Med Genet A 182:348</u>					
Lee et al. (2017) Genet Med 20:1061							
		<u>Chaudhry et al. (2015) Am / Med Genet A 167:2544</u>					
		<u>Twigg et al. (2013) Nat Genet 45:308</u>					
Craniosynost osis, complex	9	Glass et al. (2019) ERF-related craniosynostosis: The phenotypic and developmental profile of a new craniosynostosis syndrome. A	IMGA 179:615				
osis, complex		Krberg et al. (2020) A progressive and complex clinical course in two family members with ERF-related craniosynostosis: a case report	. BMC MG 21:9	<u>90</u>			
Chiari 1 malformation	3	Provenzano et al. (2021) Hum Genet 140:625					
Development al disorder	2	Turner et al. (2019) Am J Hum Genet 105:1274					
Autism spectrum disorder	2	<u>Fu et al. (2022) Nat Genet</u> 54:1320					
OMIM Phenoty	/pes 🎛						
		DISEASE			COUNT		
		<u>Craniosynostosis 4</u>					
		<u>Chitayat syndrome</u>					
Orphanet Disea	ases 🎛						
		DISEASE	INHERITAN CE	AGE OF ONSET	AGE OF DEATH		
			Autosomal dominant,No t applicable	Infancy,Neon atal	normal life expectance		
		Crouzon syndrome	Autosomal dominant	Infancy,Neon atal	normal life expectancy		
		Craniosynostosis-facial dysmorphism-Chiari-1 malformation-developmental and language delay syndrome					

OMIM:

* 611888

ETS2 REPRESSOR FACTOR; ERF

Alternative titles; symbols

PE2

HGNC Approved Gene Symbol: ERF

Cytogenetic location: 19q13.2 Genomic coordinates (GRCh38): 19:42,247,569-42,255,128 (from NCBI)

Gene-Phenotype Relationships

Location	Phenotype	View Clinical Synopses	Phenotype MIM number	Inheritance	Phenotype mapping key
19q13.2	Chitayat syndrome		617180	AD	<u>3</u>
	Craniosynostosis 4		600775	AD	3

Description: Members of the ETS family of transcription factors, such as ERF, regulate cell proliferation and differentiation. They share a highly conserved DNA-binding domain, the ETS domain, that recognizes the sequence GGAA/T (de Castro et al., 1997). For further information on ETS transcription factors, see ETS1 (164720).

Gene Function-Using transfection assays of HeLa cells, Sgouras et al. (1995) found that ERF repressed the ETS2 promoter more than 30-fold. ERF also repressed the GATA1 (605371) promoter in the presence of its transactivator, GATA1. ERF suppressed the ETS-dependent transforming activity of the gag-myb (189990)-ets fusion oncogene of the avian E26 virus. The level of transcriptional repression by ERF was proportional to its affinity for the ERF target sequence in the promoter. The isolated DNA-binding domain of ERF strongly inhibited the ETS2 promoter, whereas removal of the DNA-binding domain of ERF abrogated its repressor activity. Sgouras et al. (1995) mapped the ERF repressor domain between amino acids 472 and 530. Although the ERF protein level remained constant throughout the cell cycle, ERF phosphorylation status was altered as a function of the cell cycle and after mitogenic stimulation. ERF was hyperphosphorylated in cells transformed by the activated Ha-ras (HRAS; 190020) and v-src (SRC; 190090) genes, and the transcription repressor activity of ERF was decreased after cotransfection with activated Ha-ras or the kinase domain of RAF1 (164760), indicating that ERF activity is probably regulated by the Ras/MAPK pathway. Consistent with the in vivo phosphorylation and inactivation by Ha-ras, ERF was efficiently phosphorylated in vitro by Erk2 (MAPK1; 176948) and CDC2 (116940)/cyclin B (see CCNB1; 123836) kinases at sites similar to those detected in vivo. Mutation of thr526 to ala eliminated a major ERF phosphoprotein in vivo, after phorbol ester induction, and in vitro, after ERK2 phosphorylation. Substitution of thr526 for glu also decreased the repression ability of ERF. Sgouras et al. (1995) concluded that ERF is involved in transcriptional regulation of genes activated during entry into G1 phase.

Bose et al. (2017) showed that ERF mutations in prostate cancer cause decreased protein stability and mostly occur in tumors without ERG (165080) upregulation. ERF loss recapitulated the morphologic and phenotypic features of ERG gain in normal mouse prostate cells, including expansion of the androgen receptor (AR; 313700) transcriptional repertoire, and ERF had tumor

suppressor activity in the same genetic background of PTEN (601728) loss that yields oncogenic activity by ERG. In the more common scenario of ERG upregulation, chromatin immunoprecipitation followed by sequencing indicated that ERG inhibits the ability of ERF to bind DNA at consensus ETS sites both in normal and in cancerous prostate cells. Consistent with a competition model, ERF overexpression blocked ERG-dependent tumor growth, and ERF loss rescued TMPRSS2 (602060)-ERG-positive prostate cancer cells from ERG dependency. Bose et al. (2017) concluded that their data provided evidence that the oncogenicity of ERG is mediated, in part, by competition with ERF, and raised the larger question of whether other gain-of-function oncogenic transcription factors might also inactivate endogenous tumor suppressors.

Molecular Genetics-Craniosynostosis 4: In 12 families with craniosynostosis (CRS4; 600775), Twigg et al. (2013) identified heterozygosity for mutations in the ERF gene (see, e.g., 611888.0001-611888.0005).

Chaudhry et al. (2015) analyzed the ERF gene in 40 patients with genetically undiagnosed multiple suture or sagittal synostosis, and identified 2 heterozygous mutations, one in the start codon (611888.0006) and the other in a splice site (611888.0007), in 2 affected boys. Chaudhry et al. (2015) noted that 2 (5%) of 40 patients in their study population had a pathogenic variant in the ERF gene, similar to the 3% frequency that was observed in a larger cohort (Twigg et al., 2013).

In a cohort of 182 Spanish craniosynostosis probands, Paumard-Hernandez et al. (2015) screened 7 craniosynostosis-associated genes, including the ERF gene, but did not detect any mutations in ERF. The authors suggested that the frequency of ERF mutations might be lower than previously reported.

Chitayat Syndrome: In 5 patients from 4 families with Chitayat syndrome (CHYTS; 617180), Balasubramanian et al. (2017) identified heterozygosity for a recurrent missense mutation in the ERF gene (Y89C; 611888.0008). The authors stated that it was unclear why the Y89C variant produced a different phenotype from that associated with previously reported mutations in the same region of ERF, such as R86C (611888.0003) and R65Q (611888.0004). [Albana V69I]

Description: Chitayat syndrome (CHYTS) is a rare condition characterized by respiratory distress presenting at birth, bilateral accessory phalanx resulting in shortened index fingers with ulnar deviation, hallux valgus, and characteristic facial features including prominent eyes, hypertelorism, depressed nasal bridge, full lips, and upturned nose (summary by Balasubramanian et al., 2017).

Animal Model: Papadaki et al. (2007) found that mouse Erf was expressed throughout embryonic development and adulthood. However, in situ hybridization of developing placenta showed that, after 7.5 days postcoitum, expression of Erf was restricted to extraembryonic ectoderm, and after 9.5 days postcoitum, it was restricted to a subpopulation of labyrinth cells. Erf +/- mice appeared normal and were fertile, but Erf -/- embryos died in utero at day 10 due to severe placenta defects. Erf -/- embryos failed to undergo chorioallantoic attachment and labyrinth development and instead had an expanded chorion layer that failed to further differentiate. These mice also failed to close the ectoplacental cone cavity. Erf -/- placentas had abnormalities in the giant cell and spongiotrophoblast layers. Erf -/- trophoblast stem cells showed delayed differentiation compared with wildtype cells and failed to express specific differentiation markers.

Twigg et al. (2013) generated mice with a conditional Erf allele and observed that mice heterozygous or homozygous for the conditional allele were grossly normal, whereas mice that were compound heterozygous for the conditional allele and a null allele had domed heads that

became apparent during the first 3 to 6 weeks of life. Micro-CT scanning showed craniosynostosis affecting multiple calvarial sutures. No other specific skeletal abnormalities were evident. Quantification of transcripts in embryonic day 16.5 calvaria showed up to 2-fold downregulation of multiple osteogenic markers in conditional/null mutants compared to wildtype littermates. Despite this mildly delayed embryonic ossification, by postnatal day 14 there was variable fusion of the cranial sutures of mutant, but not of wildtype, pups.

Functional disease gene list: ATP1A2, ATP1A3, ATXN8OS, CACNA1A, CACNA1S, CDK8, CHAMP1, CLCN1, CNR1, COQ2, GFAP, GLA, GLS2, HMBS, INF2, KCNH2, KCNJ18, KCNK18, KIF1B, MAP1B, MEFV, OCM, OPRM1, OTC, PMP22, POGZ, POLG, PPM1D, PRRT2, PRX, RYR2, SCN1A, SCN2A, SCN4A, SCN9A, SCN10A, SCN11A, SH3TC2, SLC1A3, SLC2A1, TNFRSF1A, TNFRSF1B, TNXB, TRAP1, TRPA1, TRPC3, TRPV1, TUBB3:

KIF1B c.4798G>A, p.Val1600Met, chr1:10,368,512, Exonic (Nonsynonymous SNV), heterozygous, paternally inherited:

			KIF1B_c.4798G>A p.Val1600M	let chr1:10,368,512 Exonic (Nonsynonymous S	NV)				
1	!		Pop Freq (HET HO) 0.0141989 (22562 177)		Ini AD	neritance)			Zygosity Heterozygous
			KIF1B						
			Autosomal dominant susce	ptibility to neuroblastoma 1					
			KIF1B						
			Autosomal dominant or sor	natic mutation Neuroblastoma, susceptibility to	,1 🕑 Auto	osomal dominant	Charcot-Marie-Toot	h disease, type 2A1	
			Autosomal dominant and set	omatic mutation KIF1B-related disorders					
			(Paternal)						
			Paternal						
			Exceeds Prevalence - AD			Curated	REVEL	Predicted	Phenotype
9	27	i	9					_	
				-					
	сомри	JTATIC	NAL AND PREDICTIVE						BP4 BP7 PP3
Cu	rated S	everity	Score	MutationTaster	SIFT			MetaLR	
3				0.999435,D	0.076,T			0.1474,T	
	.06	3		PhyloP 0.953,D	FATHMM -0.68,T			GERP++ 4.39,D	
			cted Severity Score	PhastCons	LRT			MetaSVM	
0.5				0.971,D	0.000117	,D		-0.827,T	
				MutationAssessor 2.015,D	Siphy 16.3589,B			SpliceRF	
								SpliceADA	
								-	
	POPUL	ATION	DATA						BA1 BS1 BS2 PM2 PS4
Da	te Ran	ge Spe	ific PAF						
S	pecify	date r	ange "Э 1Y "Э 2Y						
	p Freq 141989	•		gnomAD Frequency [2] 0.0141989	gnomAD E -	Exomes Frequency 🖸	L L		
	riantyx 1074074		ncy	gnomAD Heterozygous 22562					
Va 243	riantyx 80	PDK C	punt	gnomAD Homozygous 177					
				gnomAD NF Frequency 0.0173702					
ĪV	G	che	ecked	anom or the Depuistion					

MEFV c.2084A>G, p.Lys695Arg, chr16:3,243,403, Exonic (Nonsynonymous SNV), heterozygous, maternally inherited:

			MEFV_c.208	4A>G p.Lys695/	Arg chr16:3,243,403 Exonic (Nonsynonyr	nous SNV)		
•	/	П	Pop Freq (HE			Inheri	tance Zy	ygosity
			0.0039549 (6	5276 54)		AD,AI	ξ H	leterozygous
			MEFV					
			Autosoma	l recessive fami	lial Mediterranean fever 🕑 Autosomal dor	ninant familial Medi	terranean fever 👂 Autosomal dominant acute febrile neutrophilic der	matosis
			MEFV					
			Autosoma	l dominant Neu	trophilic dermatosis, acute febrile 🗿 Auto	somal recessive Fan	nilial Mediterranean fever, AR	
			Autosoma	l dominant Fam	ilial Mediterranean fever, AD 🛿 Autosoma	al dominant and aut	osomal recessive MEFV-related disorders	
			(Maternal)					
							and the second	
_	~			s Prevalence - A			Curated REVEL Predicted Phenot	type
9	27	i	Exceed	s Prevalence - A				
н	GMD						BS3 BP6 PP5 PM5 PS1 PS3 PP1 BS	64 PM3 BP2
Phe	notype				Mediterranean fever	, familial		
Vari	ant Typ	e				DM		
Acce	ession				Cł	M981245		
Ы	MID Ø	P/	ATHOGENICITY SUPPORT	CITATION TYPE	PMID NOTES	ADDITIONAL PHENOTYPE	PUBLICATION	
	668175 Copy			PRI		Mediterranean fever, familial	Bernot et al. (1998) Hum Mol Genet 7:1317	
	175300 Copy		~	SAR			Mansour <i>et al.</i> (2001) Familial Mediterranean fever in Lebanon: mutation spectrum, evi in Maronites, Greek orthodoxes, Greek catholics, Syriacs and Chitles and for an associa amyloidosis and M694V and M694I mutations. <i>E/HG</i> 9:51	
	977178 Copy		~	ACR			Gershoni-Baruch <i>et al.</i> (2002) Familial Mediterranean fever: the segregation of fou mutations in 13 individuals from one inbred family: genotype-phenotype correlation ar variability. <i>AJMG</i> 109:198	
	615741 Copy		~	APR		Henoch-Schnlein purpura	Gershoni-Baruch <i>et al.</i> (2003) Prevalence and significance of mutations in the familial fever gene in Henoch-Schnlein purpura. <i>J PEDIAT</i> 143:658	Mediterranean
	318646 Copy		~	ACR			Chalevelakis <i>et al.</i> (2008) Different intrafamilial clinical presentation of FMF mutation of <i>TEST</i> 12:125	carriers. GENET
	041150 Copy		~	APR		Fibromyalgia syndrome, association	Feng et al. (2009) Missense mutations in the MEFV gene are associated with fibromyz and correlate with elevated IL-1beta plasma levels. PLOS ONE 4:e8480	algia syndrome
	228398 Copy		~	SAR	Labelled as severe recessive disease-causing mutation. Supplementary table 9.		Bell <i>et al.</i> (2011) Carrier testing for severe childhood recessive diseases by next-ge sequencing. <i>STM</i> 3:65ra4	eneration
	975760 Copy		~	SAR	Supplemental table B		Lazarin et al. (2013) An empirical estimate of carrier frequencies for 400+ causal Mend results from an ethnically diverse clinical sample of 23,453 individuals. <i>GENET M</i>	delian variants: IED 15:178
	588594 Copy	•	~	APR		Juvenile idiopathic arthritis	Comak <i>et al.</i> (2013) MEFV gene mutations in Turkish children with juvenile idiopathic 172:1061	c arthritis. <i>EJP</i>
	907647 Copy			SAR			Moradian <i>et al.</i> (2014) Patient management and the association of less common Mediterranean fever symptoms with other disorders. <i>GENET MED</i> 16:258	
	981758 Copy		~	APR		Henoch-Schnlein purpura	Altug et al. (2013) MEFV gene mutations in Henoch-Schnlein purpura. IJRD 16	6:347
	4 251727 Copy		~	ACR			Sediv <i>et al.</i> (2014) Cluster of patients with Familial Mediterranean fever and heterozyg mutations in MEFV gene in the Czech Republic. <i>CLIN GENET</i> 86:564	Jous carriers of
	353043 Copy		~	APR		Periodic fever	Fokstuen <i>et al.</i> (2016) Experience of a multidisciplinary task force with exome sequ Mendelian disorders. <i>HUM GENOM</i> 10:24	uencing for
	364639 Copy		~	SAR			Milenkovi <i>et al.</i> (2016) Distribution of MEFV gene mutations and R202Q polymorphism population and their influence on oxidative stress and clinical manifestations of inflan 14:39	

28828621 [Copy	~	SAR			Barut et al. (2018) Familial Mediterranean fever in childhood: a single-center experience. R/38:67
28927886 Copy	-	APR	Higher frequency than expected in patient cohort	Multiple sclerosis, childhood onset	Blaschek <i>et al.</i> (2018) TNFRSF1A and MEFV mutations in childhood onset multiple sclerosis. <i>EJPN</i> 22:72
29080837 Copy	~	SAR			Procopio <i>et al.</i> (2018) Genotype-phenotype correlation in FMF patients: A "non classic" recessive autosomal or "atypical" dominant autosomal inheritance? <i>GENE</i> 641:279
29543225 Copy	~	SAR			Kriegshuser et al. (2018) Clinical and genetic heterogeneity in a large cohort of Armenian patients with late-onset familial Mediterranean fever. <i>GENET MED</i> 20:1583
29977033	-	APR		Septic shock & hyperferritinaemia	Kernan et al. (2018) Adults with septic shock and extreme hyperferritinemia exhibit pathogenic immune variation. GEN IMMUN 20:520
30476936 D Copy	~	APR	Candidate pathogenic variant. Supplement 4. [B:16:3293403:T:C:hg19:rs104895094:K695R]	Kidney and/or genitourinary disorder	Rasouly <i>et al.</i> (2019) The Burden of Candidate Pathogenic Variants for Kidney and Genitourinary Disorders Emerging From Exome Sequencing. <i>AlM</i> 170:11
30513227 Copy	~	APR		Henoch-Schonlein purpura	Ekinci et al. (2019) MEFV gene variants in children with Henoch-Schnlein purpura and association with clinical manifestations: a single-center Mediterranean experience. PMED 131:68
30783801 Copy	~	APR		Systemic autoinflammatory disease	Karacan et al. (2019) Diagnostic utility of a targeted next-generation sequencing gene panel in the clinical suspicion of systemic autoinflammatory diseases: a multi-center study. R/39:911
30826945 Copy	~	APR		Henoch-Schnlein purpura	Cakici <i>et al.</i> (2019) MEFV gene mutations in children with Henoch-Schnlein purpura and their correlations-do mutations matter? <i>CLIN RHEUM</i> 38:1947
32199921 D Copy	-	SAR			Bozgeyik <i>et al.</i> (2020) Next-generation screening of a panel of genes associated with periodic fever syndromes in patients with Familial Mediterranean Fever and their clinical characteristics. <i>GENOMICS</i> 112:2755
32597225 Copy	~	APR	Patient also has c.3019dupC;p.Leu1007Profs*2 in NOD2 and c.1463G>A;p.Arg488His in SLC22A5.	Blau syndrome	Crdova-Fletes <i>et al.</i> (2020) Whole-exome sequencing in three children with sporadic Blau syndrome, one of them co-presenting with recurrent polyserositis. <i>AUTOIMM</i> 53:344
32853466 Copy	~	SAR	See Table 1.		Umar <i>et al.</i> (2020) Genome sequencing unveils mutational landscape of the familial Mediterranean fever: Potential implications of IL33/ST2 signalling. <i>JCMM</i> 24:11294
33258288 Copy	~	SAR	Likely Pathogenic. See Supplementary data.		Quaio <i>et al.</i> (2020) Diagnostic power and clinical impact of exome sequencing in a cohort of 500 patients with rare diseases. <i>AJMGCSMG</i> 184:955
33733382 [Copy	×	FCR			Honda <i>et al.</i> (2021) Rapid Flow Cytometry-Based Assay for the Functional Classification of MEFV Variants. <i>JCIM</i> 41:1187
34426522 Copy	-	SAR	See Dataset S4.		Kars <i>et al.</i> (2021) The genetic structure of the Turkish population reveals high levels of variation and admixture. <i>PNAS</i> 118:e2026076118
35874679 [Р Сору	-	APR	Classified as VUS. Suppl. table 3.	IgG subclass deficiency	Mrup <i>et al.</i> (2022) Added Value of Reanalysis of Whole Exome- and Whole Genome Sequencing Data From Patients Suspected of Primary Immune Deficiency Using an Extended Gene Panel and Structural Variation Calling. <i>FIMM</i> 13:906328

COMPUTATIONAL AND PREDICTIVE				BP4 BP7 PP3
Curated Severity Score 7	MutationTaster 1.0,N	SIFT 0.133,T	MetaLR 0.0998,T	
REVEL 0.353	PhyloP 0.964,D	FATHMM 0.17,T	GERP++ 0.964,B	
Aggregate Predicted Severity Score 0.14	PhastCons 0.609,B	LRT 0.965121,N	MetaSVM -0.9867,T	
	MutationAssessor 1.245,T	Siphy 1.6328,B	SpliceRF -	
			SpliceADA	

POPULATION DATA			BA1 BS1 BS2 PM2 PS4
Date Range Specific PAF			
Specify date range "D1Y "D2Y			
Pop Freq 0.0053498	gnomAD Frequency 🖾 0.0039549	gnomAD Exomes Frequency [간] -	
Variantyx Frequency 0.0053498	gnomAD Heterozygous 6276		
Variantyx PDK Count 2430	gnomAD Homozygous 54		
	gnomAD NF Frequency 0.0039067		

IGVS Coding 🖸	NM_000243.3:c.2084A>G		
iene 🖸	MEFV		
INCLUDE IN REPORT	DISEASE	SEVERITY	омім
7	not provided	Pathogenic	
7	Familial Mediterranean fever	Uncertain significance	<u>249100</u>
7	Familial Mediterranean fever	not provided	<u>249100</u>
7	not provided	Likely pathogenic	
$\overline{}$	not provided	Uncertain significance	
7	not provided	Uncertain significance	
7	not provided	Uncertain significance	
$\overline{}$	Familial Mediterranean fever	Likely pathogenic	<u>249100</u>
7	Familial Mediterranean fever	Likely pathogenic	<u>249100</u>
$\overline{}$	not provided	not provided	
7	not provided	Likely pathogenic	
$\overline{}$	Cachexia,_Peripheral neuropathy,_Syncope,_Urticaria,_Intermittent diarrhea,_Abnormality of the dentition	Uncertain significance	
$\overline{}$	Familial Mediterranean fever	Uncertain significance	<u>249100</u>
7	Familial Mediterranean fever,_Acute febrile neutrophilic dermatosis,_Familial Mediterranean fever, autosomal dominant	Uncertain significance	<u>249100</u>
$\overline{}$	Renal insufficiency,_Abnormality of cardiovascular system morphology,_Heart, malformation of	Likely pathogenic	
$\overline{}$	Familial Mediterranean fever	Likely benign	<u>249100</u>
$\overline{}$	not provided	Pathogenic	
\checkmark	Familial Mediterranean fever	not provided	<u>249100</u>
\checkmark	not specified	Uncertain significance	•
$\overline{}$	Inborn genetic diseases	Pathogenic	
$\overline{}$	not provided	Pathogenic	
$\overline{}$	Familial Mediterranean fever	Pathogenic	<u>249100</u>
$\overline{}$	not provided	Likely pathogenic	
$\overline{}$	Familial Mediterranean fever,_Familial Mediterranean fever, autosomal dominant	Uncertain significance	<u>249100</u>
$\overline{}$	Familial Mediterranean fever	Likely pathogenic	<u>249100</u>
\checkmark	Familial Mediterranean fever	Pathogenic	<u>249100</u>
7	not provided	Uncertain significance	
7	Familial Mediterranean fever	Pathogenic	<u>249100</u>
7	not provided	Likely pathogenic	
$\overline{}$	Autoinflammatory syndrome	Likely pathogenic	•
$\overline{}$	not provided	Likely pathogenic	
$\overline{}$	not provided	Likely pathogenic	

IGV checked: Patient is heterozygous, mother is homozygous

SCN10A c.2485C>T, p.Arg829Cys, chr3:38,728,697 & c.268C>T, p.Arg90Trp, chr3:38,793,743; both are Exonic (Nonsynonymous SNV), heterozygous, and maternally inherited:

	_		SCN10A_c.2485C>T p.Arg829Cys chr3:38,728,697 Exonic (Nonsynonymo	us SNV)			
	9		Pop Freq (HET HO)	Inheritance			Zygosity
			0.0000130 (21 -)	AD			Heterozygous
			Autosomal dominant Episodic pain syndrome, familial, 2 Autosomal dominant	lominant SCN10A-related disor	ders		
			Maternal				
9	Q	i	Exceeds Prevalence - AD	Curated	REVEL	Predicted	Phenotype
Ľ		•					

GVS Coding 🖸			NM_006514.4:c.2485C>T			
ne 🖸			SCN10A			
ICLUDE IN REPOR		SEASE	SEVERITY	OMIM		EVIEW STATUS
1		a syndrome	Uncertain significance			ided, single submitter (1/4)
2		provided	Uncertain significance	•		ided, single submitter (1/4)
	Cardiovascu	ular phenotype	Uncertain significance		criteria provi	ided, single submitter (1/4)
COMPUTATIONAL	L AND PREDICTIVE					BP4 BP7 I
rated Severity Scor	ore	MutationTaster	SIFT		MetaLR	
		1.0,D	0.0,D		0.9698,D	
.956		PhyloP 1.048,D	FATHMM -4.42,D		GERP++ 5.05,D	
	Courselles Coors					
ggregate Predicted	i Sevenity Score	PhastCons 0.9,D	LRT 1e-06,U		MetaSVM 1.082,D	
		MutationAssessor	Siphy		SpliceRF	
		4.41,D	18.5967,B		-	
					SpliceADA	
POPULATION DAT						BA1 B51 B52 PM2
ate Range Specific F Specify date range op Freq 0000130 ariantyx Frequency	PAF © 31Y 32Y	gnomAD Frequency [2 0.0000130 gnomAD Heterozygous 21 gnomAD Homozygous - gnomAD NF Frequency 0.0000161	gnomAD Exor -	nes Frequency 🖸		BA1 B51 B52 PM2 1
hate Range Specific F Specify date range op Freq 000030 ariantyx Frequency ariantyx PDK Count	PAF e DIY D2Y	0.0000130 gnomAD Heterozygous 21 gnomAD Homozygous - gnomAD NF Frequency 0.0000161		nes Frequency 🗗		BA1 B51 B52 PM2 1
ate Range Specific F Specify date range opo Freq oooon30 ariantyx Frequency ariantyx PDK Count	PAF e 31Y 32Y t t <u>CCN10A_c.268C>T</u> p.Arg	0.0000130 gnomAD Heterozygous 21 gnomAD Homozygous - gnomAD NF Frequency	- onic (Nonsynonymous SNV)			
ete Range Specific F Specify date range op Freq oooor30 ariantyx PDK Count ariantyx PDK Count	PAF e 31Y 32Y t t CN10A_c.268C>T p.Arg Pop Freq (HET HO)	0.0000130 gnomAD Heterozygous 21 gnomAD Homozygous - gnomAD NF Frequency 0.0000161				Zygosity
Date Range Specific F Specify date range op Freq 0000130 ariantyx PDK Count ariantyx PDK Count	PAF e	0.0000130 gnomAD Heterozygous z1 gnomAD Homozygous - gnomAD NF Frequency 0.0000161 g90Trp chr3:38,793,743 Ex	- onic (Nonsynonymous SNV) Inherit	ance		

ClinVar: Benign x3

COMPUTATIONAL AND PREDICTIVE				BP4 BP7 PP3
Curated Severity Score 2	MutationTaster 0.93457,D	SIFT 0.0,D	MetaLR 0.7342,D	
REVEL 0.673	PhyloP 1.048,D	FATHMM -3.93,D	GERP++ 1.92,D	
Aggregate Predicted Severity Score 0.73	PhastCons 1.0,D	LRT 0.002504,N	MetaSVM 0.5299,D	
	MutationAssessor 1.795,T	Siphy 12.789,B	SpliceRF 0.368	
			SpliceADA 0.146353083412919	
POPULATION DATA Date Range Specific PAF				BA1 BS1 BS2 PM2 PS4
Specify date range "D1Y "D2Y				
Pop Freq 0.0007571	gnomAD Frequency 🔀 0.0007571	gnomAD Exomes Frequency 🖸 -		
Variantyx Frequency -	gnomAD Heterozygous 1173			
Variantyx PDK Count -	gnomAD Homozygous 24			
	gnomAD NF Frequency 0.0230608			

OMIM	Autosomal dominant Episodio	pain syndrome, familial, 2 HGMD	Reduced activity				
(SCN10A) 2 entries	Autosomal dominant SCN10A	(SCN10	Refractory epilepsy & autism spectrum disorder				
2 charles	V Autosomai dominant SCNIDA	-related disorders 45 ent	Arrhythmia				
	S Congenital insensitivity to pain-anosmia-neuropation	nic arthropathy	Autism				
ORPHANE T	Primary erythromelalgia		Scardiomyopathy, dilated, modifier of				
	Romano-Ward syndrome		 Cardiomyopathy, primary fibrotic atrial Cardiovascular disease trait Congenital diaphragmatic hernia 				
(SCN10A)	Paroxysmal extreme pain disorder						
6 entries	Sodium channelopathy-related small fiber neuropa	thy					
	Brugada syndrome		Constructed heart defects				
	Brugada syndrome						
	 Studen unexplained death Autism spectrum disorder Atrial fibrillation Atrial fibrillation & slow ventricular rates Atrioventricular nodal reentry tachycardia 		Hypoplastic left heart syndrome				
			Intellectual disability				
			Left ventricular obstruction & Neurodevelopmental disorder				
			Neurodevelopmental disorder				
			Neurodevelopmental disorder, severe				
	Cardiac conduction disease		PR interval, association with				
	Kidney stone disease		 Painful sensory neuropathy Painful small fibre neuropathy with gastroparesis 				
	Neuromuscular disorder & eplieptic encephalopath	y					
	QRS interval, association with		Peripheral neuropathy, association with				
	Small fibre neuropathy		Sensory and autonomic neuropathy				
	Sudden cardiac arrest						
	Sudden unexpected nocturnal death		Stillbirth				
	Atrial fibrillation, early-onset		 Sudden cardiac death in J wave syndrome Sudden infant death syndrome 				
	Congenital harlequin syndrome						
	 Developmental disorder Erythromelalgia Infantile spasms 		Sudden unexpected nocturnal death, reduced risk				
			Sudden unexplained death of youth				
			Episodic pain syndrome, familial, 2				
	Lennox-Gastaut syndrome	ClinVa (SCN10					
	Long QT syndrome						
	Peripheral neuropathy, painful		Impaired temperature sensation				
PHENOTYP	PEMATCHING						
	UNMATCHED PATIENT	MATCHED	UNMATCHED DISEASE				
Behavioral	abnormality						
Cognitive i	mpairment						
Insomnia							
 Autism Encephalop 	path/						
 Encephalo Hyporeflex 							
	elopmental delay		Autosomal dominant inheritance				
Skeletal m			Adult onset				
EEG abnor	mality		Hyperalgesia				
Recurrent							
Feeding dit							
Recurrent	5						
	peech and language development						
Arachnoid	Lýst.						

Hypotonia

IGV checked x2

SCN10A: sodium voltage-gated channel alpha subunit 10

Gene Other Names: Nav1.8, hPN3, SNS, PN3

Function Description: Tetrodotoxin-resistant channel that mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which sodium ions may pass in accordance with their electrochemical gradient. Plays a role in neuropathic pain mechanisms.

se Count		
ses 🖽		
COUNT	PUBLICATIONS	
	Campuzano et al. (2019) Genetic interpretation and clinical translation of minor genes related to Brugada syndrome. HUM MUT 40:749	
	Hu et al. (2014) / Am Coll Cardiol 64:56	
45	<u>Monasky <i>et al.</i> (2019) <i>Europace</i> 21:1550</u>	
	Behr et al. (2015). Cardiovasc Res 106:520	
	<u> Eukuyama et al. (2016) Europace 18:905</u>	
	Lin et al. (2017). Circ Cardiovasc Genet 10:e001839	
	<u>Gando <i>et al.</i> (2019) <i>Forensic Sci Int</i> 301:289</u>	
12	<u>Neubauer et al. (2016). Int j Legal Med 130:1011</u>	
	Gando et al. (2019) Functional characterization of SCN10A variants in several cases of sudden unexplained death. F5/301289	
	Heinrichs et al. (2021) The Potential Effect of Na v1.8 in Autism Spectrum Disorder: Evidence From a Congenital Case With Compound Heterozygous SCN10A Mutations. FMN 14:70	9228
	Kambouris et al. (2017). Ann Clin Transl Neurol 4:25	
11	<u>Fu <i>et al.</i> (2022) <i>Nat Genet</i> 54:1320</u>	
	Lee et al. (2021) Front Genet 12:	
	Rabia et al. (2022). Genes (Basel) 13:1633	
	Jabbari et al. (2015). Circ Cardiovasc Genet 8:64	
7	Savio-Galimberti <i>et al.</i> (2014) Cardiovasc Res 104:355	
	Hong et al. (2020) Pathogenic mutations perturb calmodulin regulation of Na _v 1.8 channel. BBRC 533:168	
3		
	Kars et al. (2021) The genetic structure of the Turkish population reveals high levels of variation and admixture. PNA5118:e2025076118	
types 🖽		
cypes 🖽	DISFASE	COUNT
		20011
	COUNT 45 12 11	Instrumentation PublicATIONS COUNT PUBLICATIONS Construction Computation of all (2019) Genetic interpretation and dimical translation of minor genes related to Brugada syndrome. HUM MUT 40:799 445 Computation of all (2019) Genetic interpretation and dimical translation of minor genes related to Brugada syndrome. HUM MUT 40:799 45 Computation of all (2019) Genetic interpretation and dimical translation of minor genes related to Brugada syndrome. HUM MUT 40:799 46 Computation of all (2019) Genetic interpretation and dimical translation of minor genes related to Brugada syndrome. HUM MUT 40:799 47 Computation of all (2019) Genetic interpretation and dimical translation of minor genes related to Brugada syndrome. HUM MUT 40:799 48 Computation of all (2019) Genetic interpretation and dimical translation of minor genes related to Brugada syndrome. HUM MUT 40:799 49 Computation of all (2019) Genetic interpretation and dimical translation of SO(10A) variants in several cases of sudden uncerplained death. F5/301289 10 Heinrichs et al (2021) The Potential Effect of Na v18 in Autism Spectrum Disorder: Evidence From a Congenital Case With Compound Heterozygeus SC/MUA Mutations. FMN 14:200 11 Exambouris et al (2012) Ann Clin Transl Neurol 4:26 12 Silvio-Calimberti et al (2012) Fort Genet 12: 13 Ibbari et al (2012) Fort Genet 12: 14 Colino Genet (Base) Tr

Other inherited small variants:

Calcium level was normal, so these variants are likely not disease related in Albana:

~		Д	CYP24A1_c.428_430delAAG p.Glu143del chr20:54,172,927 Exonic (Nonframeshift Substitution) Pop Freq (HET HO) Inheritance 0.0012346 (847 1) AR					Zygosity Heterozygous			
			CYP24A1								
			Autosomal recessive infantile hypercalcemia 1								
			CYP24A1								
			Autosomal recessive Hypercalcemia, infantile, 1 Autosomal	recessive CYP24A1-relat	ed disorders						
			PATIENT	REF/ALT		ZYGOSITY	ALT ALLELE FRACTION				
	0		• Proband 202639147	12/14	Heterozygous			53%			
			□ Father 202639138	13/14	Heterozygous			51%			
			O Mother 202639129	33/0	Homozygous Reference			0%			
			Paternal								
			OMIM Carrier		Curated	REVEL	Predicted	Phenotype			
9	Q7	i					-				
			4 <u>CYP24A1_c.849A>T</u> p.Lys283Asn chr20:54,162,858 Exonic (Nonsynonymous SNV)								
~		Д	Pop Freq (HET HO) Inheritance					Zygosity			
			0.0000000 (- -) CYP24A1	AR			Heterozygous				
			Autosomal recessive infantile hypercalcemia 1								
			CYP24A1								
			Autosomal recessive Hypercalcemia, infantile, 1 Autosomal Autosomal								
			PATIENT	REF/ALT		ZYGOSITY		ALT ALLELE FRACTION			
			Proband 202639147	18/16	Heterozygous			47%			
			□ Father 202639138	36/0	Homozygous Reference		0%				
			() Mother 202639129	20/18	Heterozygous		47%				
			Maternal								
			OMIM Carrier		Curated	REVEL	Predicted	Phenotype			
9	Q7	i				_					

COQ4 c.397G>T, p.Val133Leu, chr9:128,325,876, Exonic (Nonsynonymous SNV), heterozygous, maternally inherited:

~	R	Pop Freq (HET HO 0.0000000 (- -) COQ4 Autosomal recess COQ4	/al133Leu chr9:128,325,876 Exonic (Nonsynonymous) sive primary coenzyme Q10 deficiency 7 sive Coenzyme Q10 deficiency, primary, 7 • Autosom	Inheritance AR	sorders		Zygosity Heterozygous
		Variant Comments Possibly PRV single VUS in AR Maternal					
ଞ ହ	i	OMIM Carrier		Curated	REVEL	Predicted	Phenotype
СОМР	UTATIO	ONAL AND PREDICTIVE					BP4 BP7 PP3
Curated Severity Score 4 REVEL 0.069 Aggregate Predicted Severity Score 0.41			MutationTaster 0.991131,D Phylop 0.079,P PhastCons 0.988,D MutationAssessor 2.35,D	SIFT 0.358,T FATHMM 1.0,T LRT 0.047903,N Siphy 12.228,8		MetaLR 0.1095,T GERP++ 3.93,D MetaSVM -0.9024,T SpliceRF - SpliceADA -	
POPU Date Ran Specify Pop Freq 0.00000 Varianty:	/ date r 00	cific PAF ange නි1Y නි21	, gnomAD Frequency [2] 0.0000000 gnomAD Homozygous	gnomAD Exomes Frequenc	y C		BA1 BS1 BS2 PM2 PS4

mtDNA variants: No variants of interest

Loss-of-heterozygosity:

			11p11.2p11.11x2(45,800,981-51,182,410) 5.38Mb Exonic ((Region of Homozygosity))				
~			Pop Freq Genotype		Depth Call (Overlap)		
			0.0000000 Homozygous Alternate	N/A (-)			
			🛇 ?Lysosomal acid phosphatase deficiency - Recessive 🔕 ?Myasthenic syndrome, congenital, 17 - Recessive 义 Sclerosteosis 2 - Recessive,Domina	nt			
ROI	ROH 📀 O Cenani-Lenz syndactyly syndrome - Recessive O Peroxisome biogenesis disorder 8B - Recessive O Peroxisom						
			Global Depth CNV Imprinted Chromosome				
9 Q ₂ i		i	Phenotype		IGV / SVP		
		1				E	
			2				
		_	12p11.22p11.21x2(29,734,122-33,137,449) 3.40Mb Exonic ((Region of Homozygosity))				
~		Д	Pop Freq Genotype		pth Call (O A (-)	verlap)	
	0.0000000 Homozygous Alternate						
			🛿 VISS syndrome - Recessive 🕥 Warsaw breakage syndrome - Recessive 🕥 Charcot-Marie-Tooth disease, type 4H - Recessive				
			🛇 Arrhythmogenic right ventricular dysplasia 9 - Dominant 🔇 Optic atrophy 5 - Dominant 🔇 Encephalopathy, lethal, due to defective				
			Global Depth CNV				
9	9 Q ₂ i		Phenotype		IGV / SVF	>	
				+	.:. →		
			3				
		_	Xq26.2q26.3x2(132,824,991-135,863,456) 3.04Mb Exonic ((Region of Homozygosity))				
\checkmark	·	Д	Pop Freq Genotype		pth Call (O A (-)	verlap)	
	0.0000000 Homozygous Alternate						
			Spermatogenic failure, X-linked, 7 Paganini-Miozzo syndrome - X-linked Recessive Keipert syndrome - X-linked Recessive Spermato	genic fail	ure, X-link	ed, 6	
	Borjeson-Forssman-Lehmann syndrome - X-linked Recessive 💿 Hyperuricemia, HRPT-rela						
			Global Depth CNV				
9			Phenotype				
9 2 1	4	i		+	10 →	E	

Structural variants: No variants of interest

Short tandem repeats: No variants of interest; CACNA1A 11/13 CAG repeat by GAV = normal

Off-target/incidental variants: No variants of interest

<u>Per our discussion today</u>: All variants listed above were discussed, only those believed to be the most relevant are in this summary below:

- ERF c.205G>A, p.Val69Ile, chr19:42,250,383, Exonic (Nonsynonymous SNV), heterozygous, *de novo*:
 - This *de novo* variant is highly likely to alter protein function, as it is very rare in humans (3/100K people), well conserved in mammals, and variably predicted as such by computer algorithms.
 - The variant is in a hot spot for mutation in this gene.
 - The protein encoded by this gene is a transcriptional repressor.
 - Variants in this gene have been reported in craniosynostosis or autism/NDD.
 - This variant is an excellent candidate for being disease causal or related in this patient.

- SCN10A c.2485C>T, p.Arg829Cys, chr3:38,728,697 & c.268C>T, p.Arg90Trp, chr3:38,793,743; both are Exonic (Nonsynonymous SNV), heterozygous, and maternally inherited:
 - This variant is likely to alter protein function, as it is rare in humans, conserved in vertebrates, and variably predicted as such by computer algorithms.
 - The protein encoded by this gene is a sodium channel in noxious neurons.
 - Variants in this gene have been reported in chronic pain conditions. I have seen variants in this gene in patients with autism before likely associated with behavioral meltdowns, probably due to noxious symptoms.
 - This variant is a good candidate for being disease related in this patient, especially in regards to possible behavioral meltdowns.
- MEFV c.2084A>G, p.Lys695Arg, chr16:3,243,403, Exonic (Nonsynonymous SNV), heterozygous, maternally inherited:
 - This variant is common in humans.
 - The protein encoded by this gene is pyrin, in the inflammatory cascade.
 - Variants in this gene have been reported in autoinflammatory conditions, including FMF and fibromyalgia.
 - This variant is a good candidate for being disease related in this patient, especially in regards to improvement on therapies that decrease inflammation (e.g., IVIG).

Potential management issues for consideration:

- SCN10A-targeted therapies: In particular, mitochondrial-targeted dietary supplements, additional magnesium and zinc, gabapentin, and/or duloxetine
- MEFV-targeted therapies: In particular, NSAIDS ibuprofen, naproxen, colchicine, ketorolac

Additional information regarding one of the above genes:

SCN10A: This gene encodes for one subunit of the NaV1.8 sodium channel that transmits electrical signals in nociceptors, which are the peripheral nerve cells that transmit pain signals. Disease manifestations are generally autosomal dominantly-inherited, chronic pain conditions resulting from hyperactive mutant channels in which an increase in sodium ion influx enhances the transmission of pain signals. The SCN9A gene (NaV1.7 sodium channel) is a better-known cause of chronic pain, although SCN10A is thought to be similar. Conditions caused by these genes include erythromelalgia, paroxysmal extreme pain disorder, and small fiber neuropathy, all of which have in common episodes of severe noxious stimuli (often pain, but can be burning, itching, etc., often with allodynia). Signs and symptoms can be localized or generalized, often associated with erythema, swelling, and warmth, sometimes accompanied with an extended peripheral (e.g., autonomic, enteral, sensory) neuropathy, and occasionally associated with seizures or degeneration. No treatment is consistently effective. However, the diagnosis is often helpful in understanding that the pain is "real", and not driven by neurosis or secondary gain. Additionally, a diagnosis suggests that chronic treatment of neuropathic pain is indicated, and not a "course" of narcotics. Therapies shown to be effective in relieving pain in some individuals

include avoidance of triggers, cooling of the extremities, gabapentin, serotonin-norepinephrine reuptake inhibitors, selective serotonin reuptake inhibitors, tricyclic antidepressants, carbamazepine, and sodium channel blockers, among several others. Functional medicine approaches might include neuroprotective agents such as supplementation with antioxidants or magnesium.

Richard G. Boles, M.D. Medical Geneticist Director, Neurabilities NeuroGenomics Program Cell: 310-869-6332 Fax: 626-270-4272 rboles@neurabilities.com https://neurabilities.com/neurogenomics

This "Peer-to-Peer" Service is performed as part of the Neurabilities NeuroGenomics Service, and further information regarding the nature and limitations of the Service are found at https://cnnh.org/cnnhservices/neurogenomicsprogram/#. In particular, this Service involves a discussion among professionals of potential diagnoses and/or management options, but does not constitute the practice of medicine, and no physician-patient relationship is provided or inferred by this Service.

Disclosure: I am the Chief Medical & Scientific Officer for NeuroNeeds LLC, the start-up company that makes SpectrumNeeds®, EnergyNeeds®, QNeeds®, OmegaNeeds®, and CalmNeeds®. As such, I may receive financial compensation based upon by efforts and/or the success of the company. However, I receive no appreciable additional compensation based of if you buy this product. My primary interest herein is as your child's physician. You are under no obligation to purchase this or any product, whether recommended by myself (Dr. Boles) or another health care provider. As always, it is recommended that you contact your physician regarding any changes to disease management.